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ASYMPTOTIC SOLUTION OF THE PROBLEM

OF THE ACTION OF A STAMP ON AN ELASTIC LAYER LYING

ON THE SURFACE OF A COMPRESSIBLE FLUID OF INFINITE DEPTH

UDC 532.591+539.3V. P. Ryabchenko

This paper considers a two-dimensional linear unsteady problem of rigid-stamp indentation on an
elastic layer of finite thickness lying on the surface of a compressible fluid of infinite depth. The Lamé
equations holds for the elastic layer, and the wave equation for the fluid velocity potential. Using
the Laplace and Fourier transforms, the problem is reduced to determining the contact stresses under
the stamp from the solution of an integral equation of the first kind, whose kernel has a logarithmic
singularity. An asymptotic solution of the problem is constructed for large times of interaction.

Key words: stamp, elastic layer, compressible fluid, contact stresses.

Introduction. For operation of facilities located on ice, it is necessary to know the dynamic loads caused
by the motion of these objects, for example, under the action of vibration or an applied load. An ice sheet is often
modeled by a thin elastic plate floating on a fluid surface [1, 2]. It is assumed in this case that ice completely covers
the fluid free surface and is loaded by a concentrated force or a locally distributed time-periodic pressure on its
surface. Another model is based on the assumption that ice is an elastic half-space, on whose surface there is a rigid
stamp, which models the facility. From the state of rest, the stamp begins to move in a predetermined manner, and
the effect of the fluid is ignored [3, 4]. Because ice has finite thickness, it is of interest to solve the problem of a
stamp on an elastic layer lying on a fluid surface. In the present work, an asymptotic solution of this hydroelastic
problem was obtained in a linear formulation for large times of interaction.

Formulation of the Problem. A rigid stamp of width 2a (−a � x1 � a) is pressed in a predetermined
manner into an elastic layer of thickness 2h1 (−∞ < x1 < ∞ and −h1 � y1 � h1) which lies on the surface of a
compressible fluid of infinite depth (−∞ < y1 � −h1). If the elastic medium and the fluid are assumed to be in the
state of rest before the stamp indentation (t1 < 0), then the fluid flow is potential and, at the initial time t1 = 0, the
displacements of the elastic medium u1 and v1, the velocities of these displacement, and the fluid flow potential ϕ1

and ∂ϕ1/∂t1 are equal to zero. In the zone of contact of the stamp with the upper boundary of the layer y1 = h1,
friction and adhesion forces are ignored and, outside the stamp, the upper boundary of the layer is not loaded. The
lower boundary of the layer is acted upon only by the normal stresses caused by the fluid flow, and the condition
of contact of the fluid and the elastic layer is satisfied. The shape of the stamp and the law of stamp indentation
into the layer are defined by the function f(x1, t1). As (x1, y1) → ∞, displacements and stresses are absent.

Under the assumptions made above, the problem reduces to solving the Lamé equations in the elastic layer
with respect to the dimensionless displacements u and v [5]:
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Here β1 = c2/c1, c2
1 = (λ + 2μ)/ρ, c2

2 = μ/ρ are the velocities of propagation of longitudinal and transverse waves
in the elastic medium, λ and μ are the Lamé constants, ρ is the density of the elastic material, and x = x1/a,
y = y1/a, and t = c2t1/a are dimensionless coordinates and time.

The fluid velocity potential ϕ(x, y, t) satisfies the wave equation

Δϕ − β2
2

∂2ϕ

∂t2
= 0, Δ =

∂2

∂x2
+

∂2

∂y2
, ϕ1 = ac2ϕ, β2 =

c2
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, (3)

and the pressure p is defined by the Cauchy–Lagrange integral

p = −ρ0c
2
2

∂ϕ

∂t
(4)

(c0 is the sound velocity in the fluid and ρ0 is the fluid density).
Equations (1)–(3) are solved subject to the boundary conditions

τxy(x,±h, t) = 0, −∞ < x < ∞; (5)

σyy(x, h, t) = 0, −∞ < x < −1, 1 < x < ∞; (6)

σyy(x,−h, t) = −p(x, t), |x| < ∞; (7)

v(x, h, t) = f(x, t), |x| < 1, h = h1/a; (8)

∂ϕ

∂y
(x,−h, t) =

∂v

∂t
(x,−h, t), |x| < ∞; (9)

ϕ → 0, u → 0, v → 0, τxy → 0, σyy → 0 at x2 + y2 → ∞ (10)

and initial conditions

u = v =
∂u

∂t
=

∂v

∂t
= ϕ =

∂ϕ

∂t
= 0 at t = 0.

In (5)–(10), τxy and σyy are the tangential and normal stresses in the elastic layer, respectively.
It is required to determine the distribution of normal contact stresses under the stamp σyy(x, h, t) = −q(x, t),

the stresses and displacements in the elastic layer, and the fluid velocity field.
Derivation of the Integral Equation. To solve Eqs. (1)–(3), we use the Laplace transform with respect

to time

uL(x, y, s) =

∞∫

0

u(x, y, t) exp (−st) dt.
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For the stress images, we have
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For the images (11) and (12), the solution of the Lamé equations is sought in the form

uL = ∇Φ + u1.
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These equations are valid if the new required functions satisfy the equations [6]

div u1 = 0, ΔΦ − β2
1s2Φ = 0, Δu1 − s2u1 = 0, u1 = (u1, v1).

The solution of the image equations which is symmetric with respect to x is sought in the form

u1 =

∞∫

0

sin (αx)
(
A′

1

cosh (γ2y)
sinh (γ2h)

+ C′
1

sinh (γ2y)
cosh (γ2h)
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2
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2

cosh (γ2y)
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)
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∞∫

0
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A3

cosh (γ1y)
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sinh (γ1y)
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)
dα, ϕL =

∞∫

0

A(α, s) exp (γ0y) cos (αx) dα,

where γ2
1 = α2 + β2

1s2, γ2
2 = α2 + s2, and γ2

0 = α2 + β2
2s2. Then, from the equation div u1 = 0, we obtain

αA′
1 = γ2A

′
2, αC′

1 = −γ2C
′
2.

Introducing the coefficients αA2 = A′
2 and αC2 = C′

2, from the boundary condition (5), we have

2αγ1A3 = −(α2 + γ2
2)A2, 2αγ1C3 = −(α2 + γ2

2)C2, A1 = −γ2A2, C1 = −γ2C2.

For the transverse displacements at y = ±h, we have
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2

s2
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1
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α
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Similarly, for the normal stresses at y = ±h, we obtain

σL
yy(x, h, s) = −μ

∞∫

0

cos (αx)
( (γ2

2 + α2)2

2αγ1
(A2 coth (γ1h) + C2 tanh (γ1h))

− 2αγ2(A2 coth (γ2h) + C2 tanh (γ2h))
)

dα,

σL
yy(x,−h, s) = −μ

∞∫

0

cos (αx)
( (γ2

2 + α2)2

2αγ1
(A2 coth (γ1h) − C2 tanh (γ1h))

− 2αγ2(A2 coth (γ2h) − C2 tanh (γ2h))
)

dα.

From boundary condition (9), we find that A(α, s) = svL/γ0. Then, in view of (4), pL(x,−h, s) =
−ρ0c

2
2s

2vL(x,−h, s).
Substituting the expressions obtained for σL

yy, pL, and vL into boundary condition (7) and introducing the
notation

Xa =
(γ2

2 + α2)2

γ1
coth (γ1h) − 4α2γ2 coth (γ2h), ρ∗ =

ρ0

ρ
,

Xc =
(γ2

2 + α2)2

γ1
tanh (γ1h) − 4α2γ2 tanh (γ2h), X0 =

ρ∗s4

γ0
,

we obtain the following equation for the coefficients A2 and C2:

(Xa + X0)A2 − (Xc + X0)C2 = 0 (13)
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(the quantity X0 characterizes the effect of the fluid on the deformation of the elastic layer). For y = h, the
boundary condition (6) for σyy is written as

σL
yy(x, h, s) = −qL

∗ (x, s), (14)

where qL∗ (x, s) = qL(x, s) at |x| < 1, qL∗ (x, s) = 0 at |x| > 1, and qL(x, s) is the L image of the required contact
load under the stamp q(x, t). Determining the Fourier transform of the function qL

∗

qL
∗ (x, s) =

∞∫

0

QL(α, s) cos (αx) dα

and its inverse transform

QL(α, s) =
1
π

1∫

−1

qL(ξ, s) cos (αξ) dξ,

from the boundary condition (14), we obtain

XaA2 + XcC2 = 2QLα. (15)

Thus, for the coefficients A2 and C2, we have the system equations (13) and (15), from which we obtain

A2 = 2αQL(Xa + X0)/D, C2 = 2αQL(Xa + X0)/D, D = Xa(Xc + X0) + Xc(Xa + X0).

Substituting A2 and C2 into relation (14) and using fL(x, s) to denote the L-image of the function f(x, t), we have

fL(x, s) = −s2

∞∫

0

cos (αx)QL(α, s)
2X0 + Xa + Xc

D
dα.

Using the expression for QL, we obtain the integral equation of the first kind for the function qL(ξ, s) (|x| < 1):
1∫

−1

qL(ξ, s)k(x, ξ, s) dξ = fL(x, s)

with the kernel

k(x, ξ, s) =
1
π

s2

∞∫

0

cos (αξ) cos (αx)
2X0 + Xa + Xc

D
dα.

For a flat stamp, fL(x, s) = fL
0 (s).

Some Properties of the Kernel k(x, ξ, s). To study the properties of the kernel k(x, ξ, s), we make the
replacement α = sz in the improper integral and consider integrals of the form

J(s) =

∞∫

0

cos (uz)K(s, z) dz, u = s(x ± ξ),

where K(s, z) = (2X0 + Xa + Xc)/D. The function K(s, z) contains the quantities

Xa =
(2z2 + 1)2

γ1
coth (shγ1) − 4z2γ2 coth (shγ2),

Xc =
(2z2 + 1)2

γ1
tanh (shγ1) − 4z2γ2 tanh (shγ2), X0 =

ρ∗
γ0

(γ2
1 = z2 + β2

1 , γ2
2 = z2 + 1, and γ2

0 = z2 + β2
2 ; for γ0, γ1, and γ2, the former notation is kept). In view of

qL(ξ, s) = qL(−ξ, s), the kernel becomes

k(x, ξ, s) = − 1
π

∞∫

0

cos (sz)(x − ξ)K(s, z) dz,
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where the Laplace transform parameter s enters only the arguments of the trigonometric and hyperbolic functions.
To obtain an asymptotic solution for small values of s, in the expansions of coth x and tanh x we keep two and
one term, respectively. Then, Xa = Q(z)/(sh) + sh/3 and Xc = sh (Q(z) = [1 + 4z2(1 − β2

1)]/γ2
1) and the function

K(s, z) can be written as

K(s, z) = a0 + a1sh + a2s
2h2 + . . . ,

where a0 = 1/X0, a1 = 2/Q − 1/X2
0 , and a2 = −a1/X0. The integral J(s) is written as the sum of the integrals

J1(s) and J2(s):

J1(s) =

1∫

0

cos (uz)K(s, z) dz, J2(s) =

∞∫

1

cos (uz)K(s, z) dz.

To obtain an approximate expression for J1(s), we replace cos (uz) by the first two terms of its series
expansion and K(s, z) by its representation for small s. Then,

J1(s) = q0 + q1s + q2s
2,

where

q0 =

1∫

0

a0(z) dz, q1 = h

1∫

0

a1(z) dz, q2 = −1
2

(x − ξ)2
1∫

0

z2a0(z) dz + h2

1∫

0

a2(z) dz.

For large z, we assume that γ1 ≈ z and γ2 ≈ z. Using the expansions

coth (shγ1) ≈ 1 + 2
∞∑

m=1

exp (−2mshz), tanh (shγ1) ≈ 1 + 2
∞∑

m=1

(−1)m exp (−2mshz),

we obtain

Xa = Xa∞[1 + 2
∞∑

m=1

exp (−2mshz)], Xc = Xa∞[1 + 2
∞∑

m=1

(−1)m exp (−2mshz)],

where

Xa∞ = (2z2 + 1)2/
√

z2 + β2
1 − 4z2

√
z2 + 1.

In this case (|z| � 1), the following representation holds:

K(s, z) = b0 + b1 exp (−2shz) + b2 exp (−4shz) + . . . ,

where b0 = 1/Xa∞, b1 = 0, and b2 = 2(1 − X0/Xa∞)/(X0 + Xa∞).
For large z,

Xa∞ = 2(1 − β2
1)z +

ha

z
, ha =

1
2

(3 + 3β4
1 − 4β2

1), X0 = ρ∗
(1

z
− β2

2

2z3

)
;

therefore,

b0 =
d1

z
− had2

1

z3
, d1 =

1
2

1
1 − β2

1

, b2 =
2d1

z
− 2d2

1(ha + 2ρ∗)
z3

.

Introducing the variable u = s|x − ξ| and substituting K(s, z) into J2(s) for large z, we obtain

J2(s) =

∞∫

1

cos (uz)
(d1

z
− had2

1

z3
+ . . .

)
dz + 2

∞∫

1

cos (uz)
(d1

z
− d2

1(ha + 2ρ∗)
z3

)
exp (−4hsz)dz.

Introducing the notation

I1 =

∞∫

1

cos (uz)
z

dz = −Ci(u), I2 =

∞∫

1

cos (uz)
z3

dz,
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I3 =

∞∫

1

cos (uz)
z

exp (−4hsz)dz, I4 =

∞∫

1

cos (uz)
z3

exp (−4hsz)dz

[Ci(u) is the integral cosine]. Then, for small s, the asymptotic form of the integrals Ik (k = 1, . . . , 4) is written as

I1 = −C − ln u + u2/4, I2 = (1 + u2 ln u + u2(C − 3/2))/2,

I3 = −C − ln (s
√

16h2 + (x − ξ)2 ) + 4sh + s2α1/4, I4 = 1/2 − 4sh + α1s
2 ln s + α2s

2,

where C is the Euler constant,

α1 =
1
2

[(x − ξ)2 − 16h2], α2 = α1

(
C − 3

2
+

1
2

ln [16h2 + (x − ξ)2]
)

+ 4h(x − ξ) arctan
x − ξ

4h
.

Using the obtained asymptotic expressions of the integrals for small values of s, we write the integral equation
for a flat stamp in the form

1
π

1∫

−1

qL(ξ, s) ln (s|x − ξ|) dξ = gL(x, s), (16)

where

gL(x, s) = − 1
π

1∫

−1

qL(ξ, s) ln [16h2 + (x − ξ)2] dξ + fL(s) +

1∫

−1

qL(ξ, s)F (x, ξ, s) dξ,

F = a0∗ + a1∗s + a2∗s2 ln s + a3∗s2, (17)

πd1a0∗ = q0 − 3Cd1 − d2
1(3ha/2 + 2ρ∗), πd1a1∗ = q1 + 8d1h + 8hd2

1(ha + 2ρ∗),

πd1a2∗ = −had2
1(x − ξ)2/2 − 2d1α1(ha + 2ρ∗),

πd1a3∗ = q2 + d1(x − ξ)2/4 − (1/2)had
2
1(x − ξ)2 ln |x − ξ| + d1α1 − 2d2

1α2(ha + 2ρ∗).

Equation (16) for qL(ξ, s) is an equation of the first kind with a logarithmic kernel [7]. The second term
containing logarithm takes into account the presence of the boundary of the layer located at a distance 2h from the
stamp, and it is similar to the term calculated, for example, of the flow over a profile at a distance 2h from a rigid
plate using the reflection method [8].

Differentiation of Eq. (16) with respect to x yields the singular integral equation

1
π

1∫

−1

qL(ξ, s)
dξ

x − ξ
= − 2

π

1∫

−1

qL(ξ, s)
(x − ξ) dξ

16h2 + (x − ξ)2
+

1∫

−1

qL(ξ, s)
∂F

∂x
(x, ξ, s) dξ.

Assuming temporarily that the right side of ∂gL/∂x is known, we write the solution of this equation in the
form

qL(x, s) =
PL(s)

π
√

1 − x2
+

1
π
√

1 − x2

1∫

−1

√
1 − η2

η − x

∂gL

∂η
(η, s) dη, (18)

where

PL(s) =

1∫

−1

qL(ξ, s) dξ,
∂F

∂η
=

∂a2∗
∂η

s2 ln s +
∂a3∗
∂η

s2,

π
∂a2∗
∂η

= −d1(η − ξ)(3ha + 2ρ∗),
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πd1
∂a3∗
∂η

= −(η − ξ)

1∫

0

z2a0(z) dz +
3
2

d1(η − ξ) − had2
1(η − ξ) ln |η − ξ|

− 1
2

had2
1(η − ξ) − 2d2

1(ha + 2ρ∗)
∂α2

∂η
,

∂α2

∂η
=

(
C − 3

2
+

1
2

ln [16h2 + (η − ξ)2]
)
(η − ξ) +

(η − ξ)3

16h2 + (η − ξ)2
+ 4h arctan

η − ξ

4h
.

The required function is represented as the series

qL(x, s) = PL(s)(Q0 + Q1s
2 ln s + Q2s

2 + . . . ). (19)

Substituting (19) into Eq. (18) and collecting terms of the same powers of s, we obtain the following integral
equations for Q0, Q1, and Q2:

Q0(x) =
1

π
√

1 − x2

(
1 − 2

π

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

Q0(ξ)
η − ξ

16h2 + (η − ξ)2
dξ

)
; (20)

Q1(x) = − 2
π2

√
1 − x2

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

Q1(ξ)
η − ξ

16h2 + (η − ξ)2
dξ

+
1

π
√

1 − x2

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

Q0(ξ)
∂a2∗
∂η

dξ; (21)

Q2(x) = − 2
π2

√
1 − x2

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

Q2(ξ)
η − ξ

16h2 + (η − ξ)2
dξ

+
1

π
√

1 − x2

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

Q0(ξ)
∂a3∗
∂η

dξ. (22)

To find the functions Q0(x), Q1(x), and Q2(x), we expand the integrand functions on the right side of
Eqs. (20)–(22) in series in a certain parameter related to the layer thickness h. This parameter is taken to be
τ =

√
1 + h2/4 − h/2; moreover, it is assumed that τ < 1 for any h, in particular, τ = 0 for h = ∞ and τ = 1 for

h = 0. The following expansion holds:

1
(x − ξ)2 + 16h2

=
τ2

16

(
1 − τ2(τ2 − 2) − τ2(x − ξ)2

16
+ . . .

)
. (23)

The required functions can be represented as series in τ :

Qn = Qn0 + τ2Qn1 + τ4Qn2 + . . . (n = 0, 1, 2).

Substituting these series into Eqs. (20)–(22) and equating terms of the same powers of τ , we obtain

Qn0(x) =
1

π
√

1 − x2
, Q01(x) = − 1

8π2
√

1 − x2

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

Q00(ξ)(η − ξ) dξ,

Q02(x) = − 1
8π2

√
1 − x2

1∫

−1

√
1 − η2

η − x
dη

1∫

−1

(η − ξ)
[
Q00(ξ)

(
2 − (η − ξ)2

16

)
+ Q01(ξ)

]
dξ.
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Calculations of the integrals on the right sides of the expressions for Q01(x) and Q02(x) yields

Q01(x) = − x2

4π
√

1 − x2
, Q02(x) = − 1

128π
√

1 − x2
(x4 + 56.5x2 − 0.125).

A similar method was used in [8, 9].
Passing to Laplace originals in (19) for the case of a flat stamp considered, we obtain the following asymptotic

expression for the contact load under the stamp for large times:

q(x, t) = Q0(x)P (t) +
d2P (t)

dt2
[Q2(x) − CQ1(x)] − Q1(x)

d

dt

t∫

0

d2P

dτ2
ln (t − τ) dτ.

The Laplace original of the expression s2PL(s) ln s was obtained using the convolution theorem and the relation
s−1 ln s ⇒ − ln t − C [10].

To find PL(s), we multiply Eq. (16) by 1/
√

1 − x2 and integrate the result over x from −1 to 1:

1
π

1∫

−1

qL(ξ, s)dξ

1∫

−1

ln s|x − ξ|√
1 − x2

dx −
1∫

−1

qL(ξ, s)dξ

1∫

−1

F (x, ξ, s)√
1 − x2

dx

+
2
π

1∫

−1

qL(ξ, s) dξ

1∫

−1

ln s
√

16h2 + (x − ξ)2√
1 − x2

dx = πfL(s). (24)

On the left side of expression (24), the first integral over x has the form [11]
1∫

−1

ln s|x − ξ|√
1 − x2

dx = π ln
s

2
.

The second integral is written as
1∫

−1

ln s
√

16h2 + (x − ξ)2√
1 − x2

dx = π ln s + I2(ξ),

where

I2(ξ) =

1∫

−1

ln
√

16h2 + (x − ξ)2√
1 − x2

dx.

Differentiating I2(ξ) over ξ and using expansion (23) in the parameter τ , we obtain

dI2

dξ
=

τ2

16
πξ − τ4π

256
ξ(ξ2 − 30.5).

Integration of this expression with respect to ξ yields

I2(ξ) =
τ2

32
πξ2 +

τ4π

1024
ξ2(61 − ξ2) + C∗.

The constant C∗ is determined as the value of the integral I2 for ξ = 0 [11]:

C∗ = π ln (4h) + π ln 0.5
[
1 +

√
1 + 1/(16h2)

]
.

Substitution of the values of the integrals and the function F (x, ξ, s) defined by formula (17) into Eqs. (24) yields

PL(s) = πfL(s)/w(s), (25)

where

w(s) = d1 ln s + d0 + d2s + d3s
2 ln s + d4s

2 + . . . ,
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d0 = −(ln 2 + πa0∗)J0 +
2
π

1∫

−1

Q0(ξ)I2(ξ) dξ, d1 = 3J0, d2 = −πa1∗J0,

d3 = −(ln 2 + πa0∗)J1 + 3J2 +
2
π

1∫

−1

Q1(ξ)I2(ξ) dξ − J0

1∫

−1

a2∗(x)√
1 − x2

dx,

d4 = −(ln 2 + πa0∗)J2 +
2
π

1∫

−1

Q2(ξ)I2(ξ) dξ − J0

1∫

−1

a3∗(x)√
1 − x2

dx,

Jk =

1∫

−1

Qk(ξ) dξ, k = 0, 1, 2.

To obtain asymptotic formulas for PL(s) for small s, we write w−1(s) in (25) in the form

w−1(s) =
1

d1 ln s

(
1 +

d0

d1 ln s
+

d2s

d1 ln s
+ . . .

)−1

,

and expand the expression in parentheses in a series taking into account that s < 1. Then,

PL(s) =
π

d1
fL(s)gL

1 (s) − πd0

d2
1

fL(s)gL
2 (s) + . . . ,

where gL
1 (s) = 1/ ln s and gL

2 = 1/ ln2 s. Using the convolution theorem, we pass to the Laplace originals

P (t) =
π

d1

t∫

0

f(t − τ)g1(τ) dτ − πd0

d2
1

t∫

0

f(t − τ)g2(τ) dτ + . . . , (26)

where, according to [10],

g1(τ) =

∞∫

0

τz−1

Γ(z)
dz, g2(τ) =

∞∫

0

zτz−1

Γ(z)
dz,

[Γ(z) is a gamma function].
As t → ∞, the integrals over τ become improper. To estimate the convergence of these integrals, we study the

behavior of the functions g1(τ) and g2(τ) for large values of the argument. Applying the saddle-point method [12]
to estimate the integrals g1(τ) and g2(τ) as τ → ∞, we write them as

g1(τ) =

∞∫

0

exp (h1(z, τ)) dz, g2(τ) =

∞∫

0

exp (h2(z, τ)) dz,

where h1(z, τ) = (z − 1) ln τ − ln Γ(z) and h2(z, τ) = (z − 1) ln τ + ln z − ln Γ(z). For the saddle point, we have
h′

i(z) = 0. Since, for large z (z ∼ t, τ � 1) ln Γ(z) ∼ z ln z − z + . . . , we find the saddle point z = τ at which
h′′(τ, τ) = −1/τ . The contribution to the integral g1(τ) is given by

V1c(τ) =
√

2πτ ττ−1Γ−1(τ) = eτ ,

because Γ(τ) =
√

2π exp (−τ)ττ−1/2 as τ → ∞. For the integral g2(τ), the saddle point z = τ , and, for τ → ∞, its
contribution to the integral is V2c(τ) = τeτ .

Thus, for the convergence of the integrals in the representation (26) for P (t), it is necessary that the given
stamp displacement function f(x, t) increase exponentially as t → ∞. In this case, the total load on the stamp also
increases exponentially with time, because the expression for P (t) contains the integrand function f(t − τ).

In [13], a similar distribution was obtained by asymptotic analysis for the problem of pure shear of an elastic
layer with a fixed foundation by a stamp acted upon by a shear force for a large time. In addition, in [13], it
is noted that if the displacement vector is sought in the form u(x, y, t) = u0(x, y) exp (νt), asymptotic analysis
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makes it possible to construct an asymptotic solution of the problem for large times without applying the Laplace
transform.

The function f(t) obtained from the condition of convergence of the integrals in (26), is a particular case
of the law of motion of the stamp. Generally, these integrals can be divergent. This is due to the fact that in a
number of two-dimensional contact problems, the passage to the limit in the parameter cannot be performed. In
particular, it has been shown [14] that a number of two-dimensional mixed problems for a layer of thickness λ are
reduced to integral equations of the first kind, which, for large λ, can be written as

1∫

−1

q(ξ)(− ln |ξ − x| + d) dξ = f(x),

where d = ln (4λ/π). For large λ, the kernel of this equation tends to infinity. In [14], it is noted that, because of
the presence of the constant d in the kernel, the limiting case λ = ∞ cannot be considered. In [14], this is regarded
as a consequence of the replacement of three-dimensional problems by two-dimensional ones. The kernel of the
integral equation (16) also contains a logarithmic constant, which tends to infinity as s → 0; therefore, the solution
of this equation tends to infinity as ln s, i.e., as s → 0, the passage to the limit is absent from the solution of the
steady-state problem. In [3], it is also noted that, for t → ∞, this passage to the limit cannot be performed.

In two-dimensional problems of elasticity and hydrodynamics, logarithmic terms appear in the case where
the examined region of a continuous medium contains an infinitely distant point. This, however, does not prevent
the use of the obtained solutions in the part of the region, in which the corresponding quantities are small (for
example, displacements in elastic theory or the potential in hydrodynamics). The solution obtained can be used for
finite times of interaction, similarly to asymptotic solutions in two-dimensional contact problems for layers of finite
values of the parameter λ.
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